2022年买电子元器件,上唯样商城

简化隔离式软件可配置I/O通道设计的高集成度、系统级方法

本文介绍一种软件可配置输入/输出(I/O)器件及其专用隔离电源和数据解决方案,该解决方案有助于应对系统级工业应用的设计挑战。本文阐述了在设计单个IC时从系统级角度进行思考的优势,并重点讨论了建议解决方案的功耗优化功能。

简介


为过程控制、工厂自动化、楼宇控制系统等工业应用设计系统级隔离式I/O解决方案时,有许多方面需要考虑,其中包括功耗、数据隔离和外形尺寸。图1显示了系统解决方案,其在隔离式单通道软件可配置I/O解决方案中使用 AD74115H 和ADP1034 ,解决了电源、隔离和面积挑战。通过将ADP1034的电源和数据隔离功能与AD74115H的软件可配置能力相结合,可以仅使用两个IC和非常少的外部电路来设计一个隔离式单通道I/O系统。


系统级解决方案


ADP1034是一款高性能隔离式电源管理单元,包含一个隔离反激式稳压器、一个反相降压升压调节器和一个降压调节器,提供三个隔离式电源轨并集成了七个低功耗数字隔离器。ADP1034还具有可编程功率控制(PPC)功能,可通过单线接口按需调整VOUT1上的电压。VOUT1为AD74115H AVDD电源轨提供6 V至28 V的电压。VOUT2为AD74115H电源轨AVCC和DVCC提供5 V电压。如需要,它还能为外部基准电压源提供电源电压。VOUT3为AD74115H AVSS电源轨提供-5 V至-24 V的电压。


功耗和优化


设计通道间隔离模块时,主要的权衡通常是在功耗和通道密度之间。随着模块尺寸缩小,通道密度增加,每个通道的功耗必须降低,以满足模块的最大功耗预算要求。在这种情况下,模块是指ADP1034和AD74115H,当它们共同使用时,可提供隔离电源、数据隔离和软件可配置I/O功能。


AD74115H和ADP1034之所以成为出色的低功耗解决方案,原因在于集成PPC功能的引入。PPC使用户能够按照需求调整VOUT1电压(AD74115H AVDD电源电压)。这种方法可以大大降低模块在低负载条件下的功耗,特别是在电流输出模式下。


使用PPC功能时,系统中的主机控制器通过SPI向AD74115H发送所需的电压代码,该代码随后通过单线串行接口(OWSI)传递至ADP1034。OWSI实现了CRC校验功能,非常稳健,可抵抗恶劣工业环境中可能存在的EMC干扰。


查看功耗计算示例可知,如果AVDD = 24 V且负载为250 Ω,则对于20 mA的电流输出,模块总功耗为748 mW。当使用PPC将AVDD电压降至8.6 V(负载电压 + 裕量)时,模块功耗约为348 mW。这表明模块内节省了400 mW的功耗。


功耗计算示例


示例1和示例2选择了电流输出用例,驱动20 mA输出。负载为250 Ω,使能ADC,以每秒20个样本转换默认测量配置。


1672137025469901.png

图1.ADP1034和AD74115H电路图


示例1(无PPC):


AD74115H输出功率 = (AVDD = 24 V) × 20 mA = 480 mW


AD74115H输入功率 = AD74115HQUIESCENT (206 mW) + ADC功耗 (30 mW) + 480 mW = 716 mW


模块输入功率 = 716 mW + ADP1034功耗 (132 mW) = 848 mW


负载功耗 = 20 mA2 × 250 Ω = 100 mW


模块总功耗 =(模块输入功率 - 负载功耗)= 748 mW


在示例2中可以看到,当使能PPC功能以将AVDD降低到所需电压(20 mA × 250 Ω) + 3.6 V裕量 = 8.6 V时,模块的功耗降至348 mW。


示例2(使能PPC):


AD74115H输出功率 = (AVDD = 8.6 V) × 20 mA = 172 mW


AD74115H输入功率 = AD74115HQUIESCENT (136 mW) + ADC Power (30 mW) + 172 mW = 338 mW


模块输入功率 = 338 mW + ADP1034 Power (100 mW) = 448 mW


负载功耗 = 20 mA2 × 250 Ω = 100 mW


模块总功耗 =(模块输入功率 - 负载功耗)= 348 mW


图2显示了AD74115H应用板上在25°C时的实测功耗。测量结果表明,功耗略低于计算的功耗。此结果会因器件而略有不同。


1672137007334793.png

图2.测量数据:驱动20 mA到250 Ω负载,AVDD = 24 V,AVDD = 8.6 V(使用PPC)


图3显示了使用PPC的模块(ADP1034和AD74115)功耗(针对每个负载电阻值设置优化的AVDD)与不同负载电阻值的关系。两个不同的电压被施加于ADP1034的VINP(15 V和24 V),以显示ADP1034的效率。测量是在25°C下进行。


1672136991749664.png

图3.20 mA输出时功耗与RLOAD的关系


图4显示了不同温度下使用PPC的功耗(针对每个负载电阻值设置优化的AVDD)与不同负载电阻值的关系。


1672136976975542.png

图4.功耗与温度的关系


表1.使用PPC的AD74115H典型用例功耗

1672136966837259.png


数字输出用例


在工业应用中,数字输出被认为是最耗电的使用场景。AD74115H支持内部和外部拉电流与灌电流数字输出。ADP1034可为内部数字输出功能提供足够的功率,支持最高100 mA的连续拉电流或灌电流。在这种情况下,数字输出电路电源DO_VDD直接连接到AVDD。对于100 mA以上的电流,必须使用外部数字输出功能,这需要将额外的电源连接到DO_VDD


内部数字输出用例超时


为了支持在初始上电时对容性负载充电,可以在使用内部数字输出用例的同时,使能更高的短路限流值(~280 mA),使能的时间T1可编程。经过T1时间后,部署第二短路限流值(~140 mA)。这是一个较低的限流值,在可编程的持续时间T2内有效。在这些短路情况下,系统需要更多电流,因此必须注意确保ADP1034 VOUT1电压不会骤降。为确保无骤降,如果需要24 V DO_VDD,建议将24 V电压作为ADP1034的系统电源电压。这是24 V继电器的典型电压需求。对于12 V继电器,建议使用至少18 V的系统电源电压(ADP1034 VINP),以确保可以为负载提供足够的电流。


图5和图6显示了DO_VDD与T1和T2短路限值的关系,证明了使用ADP1034提供大电流的稳定性。


1672136949964987.png

图5.系统电源 = 24 V,DO_VDD电压 = 24 V


1672136937472752.png

图6.系统电源 = 24 V,DO_VDD电压 = 12 V


数据隔离和解决方案尺寸


ADP1034采用ADI公司的iCoupler®专利技术,在7 mm × 9 mm封装中集成了三个隔离电源轨,包括SPI数据和三个GPIO隔离通道。这种高集成度将所有通道隔离要求整合到PCB上的一个小区域中,有助于解决PCB面积挑战,而且实现了省电。当通道不使用时,ADP1034的控制器端将其他SPI隔离器通道置于低功耗状态。这意味着通道仅在需要时才处于活动状态。三个隔离GPIO通道用于隔离AD74115H的RESET、ALERT和ADC_RDY引脚,从而满足AD74115H的所有隔离要求,而无需增加额外的隔离器IC成本。


结语


设计一种低功耗、小尺寸的通道间隔离I/O解决方案,哪怕是对于业内一些经验十分丰富的设计人员而言,也可能是一项挑战。ADP1034和AD74115H系统级解决方案通过高集成度和系统级设计方法化解了该挑战。由单个IC从单个系统电源提供三个隔离电源轨,并提供集成数据隔离,这使得BOM成本大幅降低。再加上AD74115H的灵活性,该系统设计将能满足大多数I/O工业应用的要求。


来源:ADI

作者:Valerie Hamilton






THE END
免责声明:本文为网友转载文章,转载此文目的在于传递更多信息,版权归原作者所有,与平台无关。本文所用视频、图片、文字如涉及作品版权问题,请联系小编微信(oneyac888)或者邮箱(guoyu.ou@oneyac.com)进行侵删。
资讯排行榜
  • 日排行
  • 周排行
  • 月排行
原厂授权品牌

更多授权品牌 >>

热卖元器件
热门标签